The Future of Data Centre Electrical Grid Impacts

Impacts of AI & Data Centres on Demand & Distribution Systems

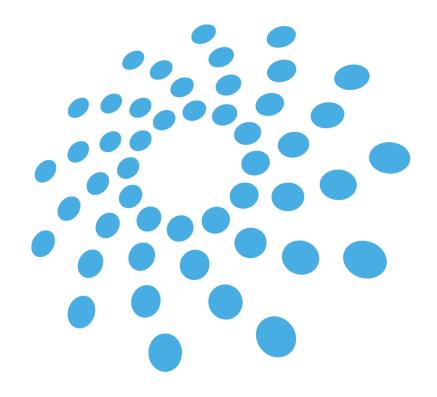
Power Session Webinar

19 February 2025

Agenda and Housekeeping

Agenda

- Drivers of Data Centre Growth
- Data Centre Loads, Efficiency, and Flexibility Options
- Data Centre Siting and Sizing
- Industry Levers for Least Cost Data Centre Integration
- Key Takeaways and Recommendations



Housekeeping

This webinar is being recorded and distributed to all registrants along with this presentation

Add your questions to the chat. My colleague, Sara, is monitoring the queue for the Q&A session

Speaker - Ezra Beeman, Energeia

ERGEIA

Ezra Beeman

Managing Director

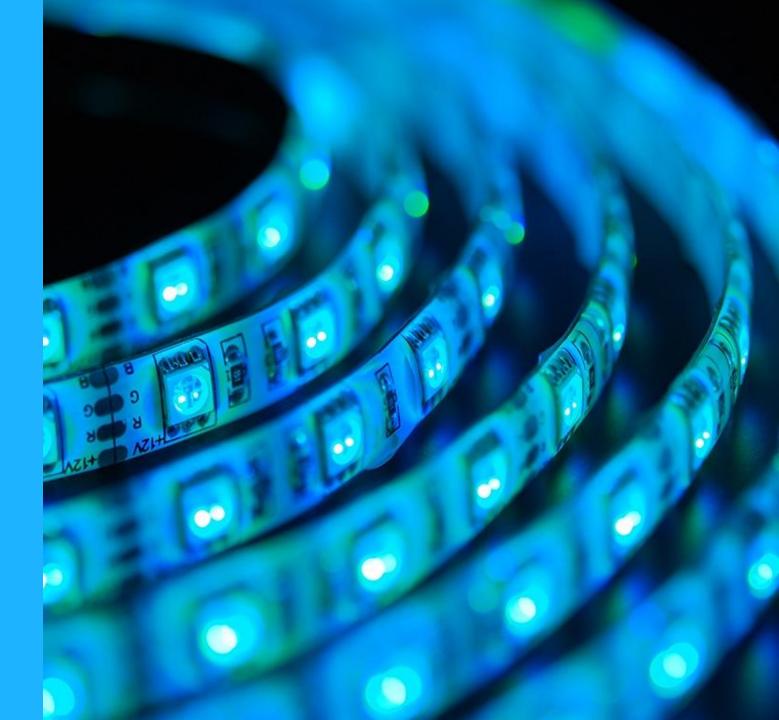
Energeia Pty Ltd, Energeia USA, Empower Energy

Formerly, Pricing Strategy Manager for EnergyAustralia (now Ausgrid), the largest utility in Australia with 1.8 million customers serving Sydney

Empower Energy develops solar batteries for virtual power plants, utilizing Ezra's patented battery optimization algorithm

Master of Applied Finance, Macquarie University, AustraliaBachelor of Arts in Economics, Claremont McKenna College, United StatesBachelor of Arts in Philosophy, Claremont McKenna College, United States

energeia.com.au

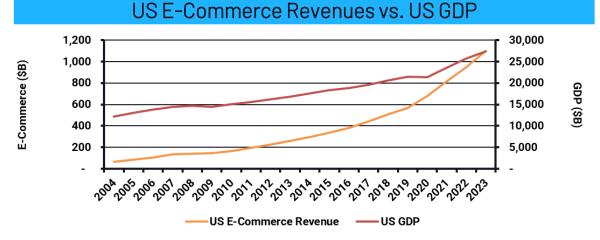

in LinkedIn.com/company/energeia-au

in LinkedIn.com/in/ezra-beeman

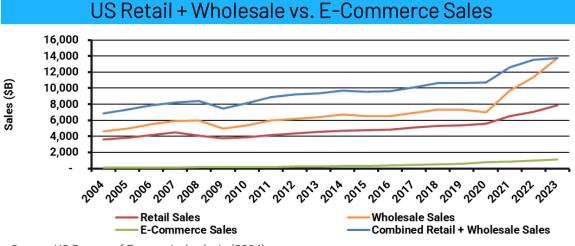
Drivers of Data Centre Growth

- IT Intensive Segments
- Segment Case Studies
- Consensus Wisdom Outlooks

IT Intensive Sectors


Key Sectors Driving Data Centre Growth			
Industry	Industry Segment		
Hosted IT	Cloud Compute		
	Outsourced Management		
	Data Management and Analytics		
	Communications		
	Natural Language Processing		
	Computer Vision		
AI/ML	Predictive Analytics		
	Robotic Process Automation		
	Generative Al		
	Online Retail		
E-Commerce	Logistics and Fulfillment		
L-Commerce	Payment Processing		
	Analytics and Data		
	User Content Platforms		
Social Media	Digital Advertising		
	Influencer and Social Marketing		
	Video Streaming		
Streaming and Entertainment	Audio Streaming		
	Gaming		
Financial Services and FinTech	FinTech Solutions		
Finalicial Services and Fintech	Blockchain Technology		
	Public Sector Cloud		
Government and Public Sector	Defence and Intelligence		
	Municipal Services		
	Health Information Systems		
Healthcare and Life Sciences	Telemedicine Solutions		
Healthcare and Life Sciences	Genomics and Research		
	Drug Discovery		
	5G Network Infrastructure		
Telecommunications and 5G Infrastructure	IoT Infrastructure		
	Network Operations Centres		
	Utility Data Management		
Energy Sector	Renewable Energy Management		
	Exploration Data Analytics		

- Energeia researched key industries and sectors contributing to demand for data centres globally
- Key sectors include, but are not limited to:
 - Generative Al
 - Cloud Compute Resources and Storage
 - Online Retail and E-Commerce
 - Social Media
 - o Gaming Platforms
 - Blockchain Tech and Cryptocurrency
 - o Virtual Reality
 - IoT Infrastructure
- 6-digit NAICS categories and sub-categories are shown at left
- Key questions include
 - What drives their electricity consumption?
 - How flexible is their electricity consumption?
 - How close to users do they need to be?
- The following slides dive deeper into a selection of key sector case studies, including indicators of growth and potential



Source: NAICS (2024), Energeia Research

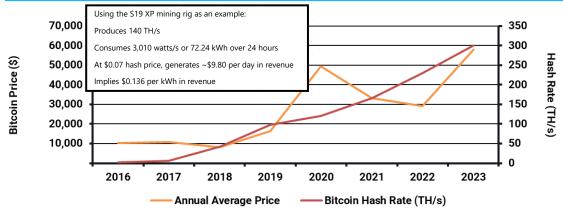
E-Commerce

Source: US Bureau of Economic Analysis (2024)

Source: US Bureau of Economic Analysis (2024)

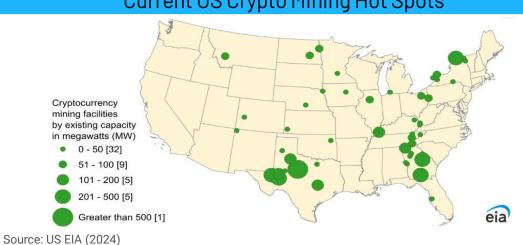
- E-Commerce one of the oldest IT applications
- It is the basis for cloud computing like AWS
- It was growing in parallel to the US economy until 2010, and then it has grown much more rapidly
- Significant flexibility in the load, due to inventory, etc. perhaps a reason AWS made a lot of sense to Amazon

- In terms of its potential, it is relatively small to retail or wholesale markets, and much smaller than both combined
- As more buying and transactions become digitized, this sector's electricity consumption will continue to grow
- A simple analysis suggests E-Commerce electricity demand could easily grow 7X over next 10-20 years
 - Assumes saturation at 80% of total sales

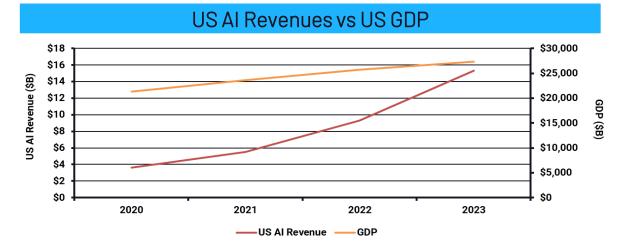

Cryptocurrency Mining

Mining Revenue vs US GDP

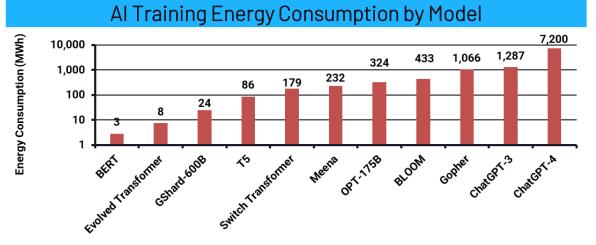
Source: Blockchain (2024), Federal Bureau of Economic Analysis (2024)


Bitcoin Price vs. Hash Rate

Source: Forbes (2024), CoinWarz (2024), Energeia Analysis

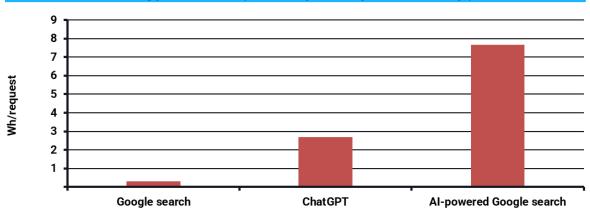


- Crypto currency is interesting because it is subject to economic • factors; if prices are higher than costs, more mining will occur
 - Relationship between prices and hashing, or mining, is shown 0 bottom left - the relationship is imperfect
 - The largest locations are not necessarily the lowest cost real-estate 0 or electricity prices, which is interesting - maybe special deals?
- In the case of Bitcoin, it has been growing in total value at about • twice the rate of the economy overall
- Upper limit as currency and investment could be bank savings and money market accounts - significant room to grow

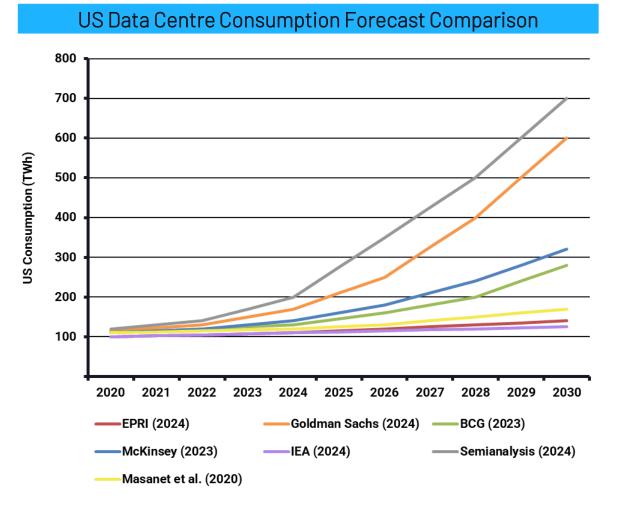


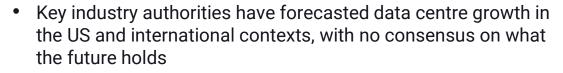
Current US Crypto Mining Hot Spots

Generative Al


Source: Bloomberg (2023), World Bank (2024), Precedence Research (2024), Energeia Analysis

Source: EPRI (2024), TRG Data Centres (2024), Energeia Analysis

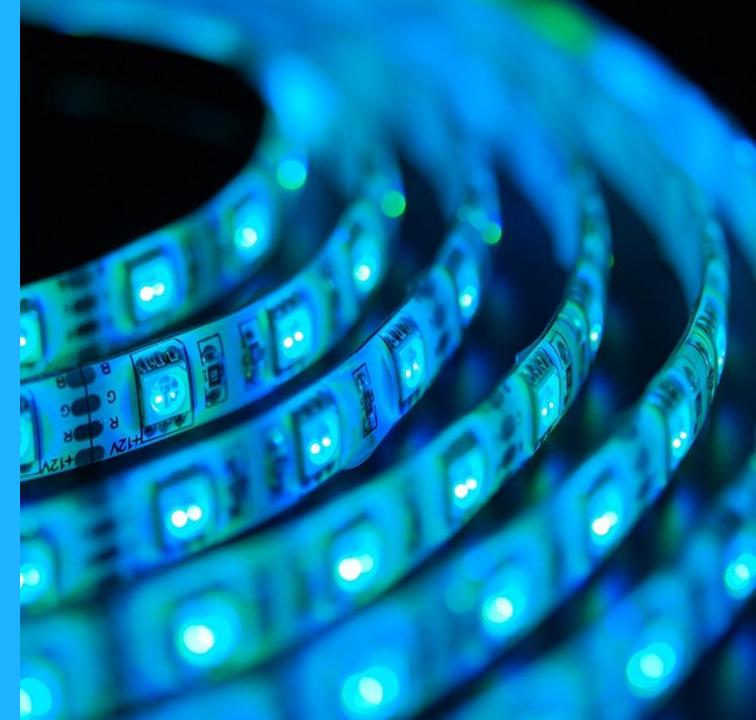

- US AI industry poised to double in market size over the next decade if current trajectory is maintained
 - Trends in AI model training show a large increase in training energy consumption (note it is log-scale!)
 - ChatGPT queries use more than 10x the energy consumption of a typical Google search, and Al-powered Google searches 2.5x more
- How much more training will be needed?
- How many Als (instances) will be needed?
- How many applications will there be (other than search)?


Energy Consumption by Query/Search Type

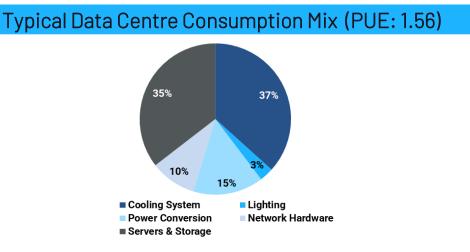
Source: Stanford (2024), EPRI (2024)

No Industry Consensus Outlook

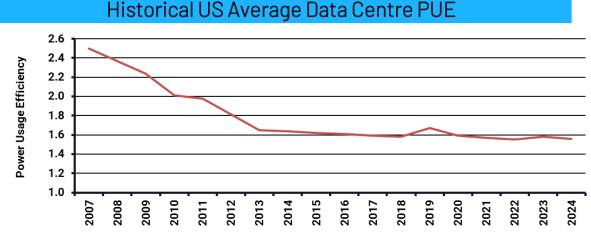
Source: IEA (2024), Energeia Research



- Estimates for 2030 US data centre energy consumption range from 120 TWh to more than 600 TWh
 - Current and historical consumption is not exact as some large-scale enterprise data centres not required to release consumption metrics
- Forecasting methodologies largely fall into two categories:
 - Top-Down: Compound annual growth rates based on recent history
 does not factor in saturation or assumes perpetual growth
 - Bottom-Up: Driven by key industry segment growth metrics like processor sales, typical processor power requirements, and infrastructure efficiency assumptions
- Load serving entities face significant risk in getting this right:
 - What will drive connection sizing, build out and operating load?
 - How many sites do we plan for and over what timeline?
 - How can we best integrate this load at least cost?
 - Load flexibility
 - BTM resources
 - Rate design
 - Connection policy

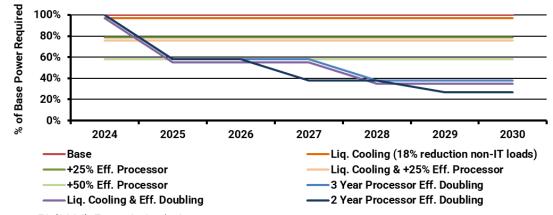

Data Centre Loads, and Efficiency and Flexibility Options

- Consumption
- Energy Efficiency
- Load Profiles
- Flexibility



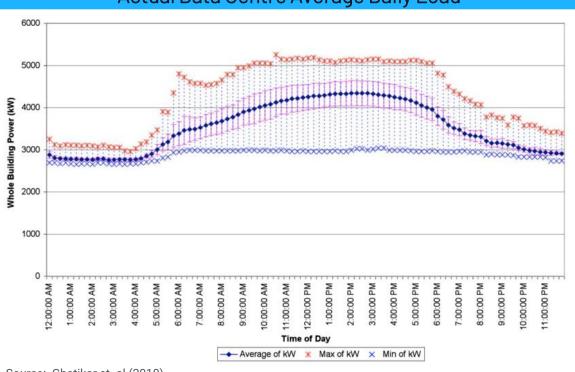
Data Centre Consumption and Energy Efficiency Potential

Source: US Federal Energy Management Bureau (2024), Semianalysis (2024), Energeia Analysis

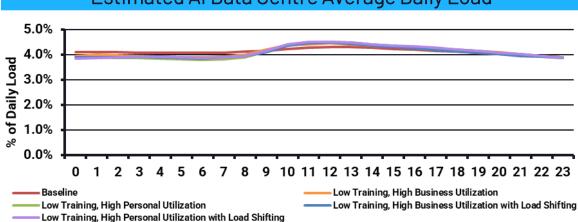


Source: Semianalysis (2024), NVIDIA (2024)

- Power conversion and network hardware in the second tier of consumption culprits, while lighting load is typically less than 3%
- Power Usage Efficiency (PUE) is a key metric for non-IT load efficiency of data centres
 - o Ratio of total data centre power requirement to critical IT power requirement
 - Critical IT power includes servers, storage, network hardware, and power conversion
 - o Average data centre PUE fell substantially to 2013, but has flatlined since
- Industry leaders such as NREL, Google, and Meta have deployed high-efficiency data centres with PUEs as low as 1.03 via deployment of liquid cooling, but industry-wide PUE has yet to catch up with leading tech giants

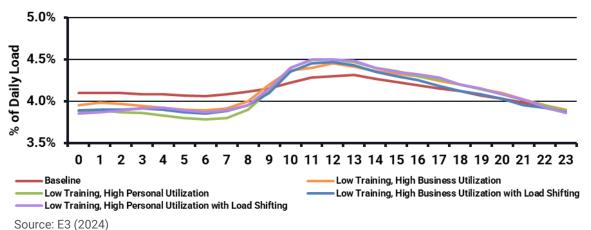

Data Centre Energy Efficiency Scenarios

Source: E3 (2024), Energeia Analysis

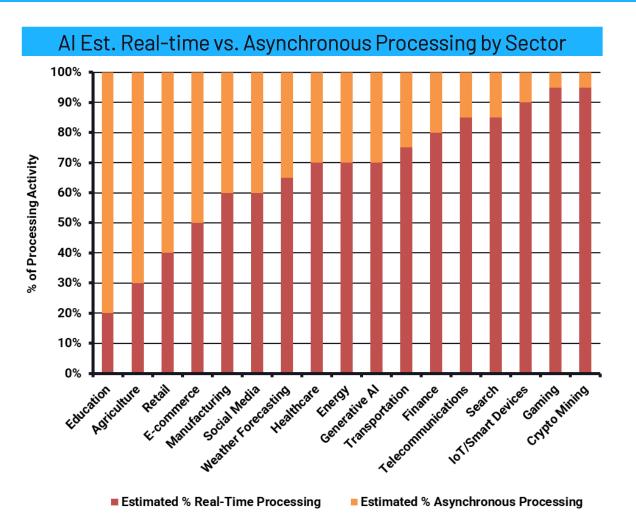

Data Centre Load Profiles

Actual Data Centre Average Daily Load

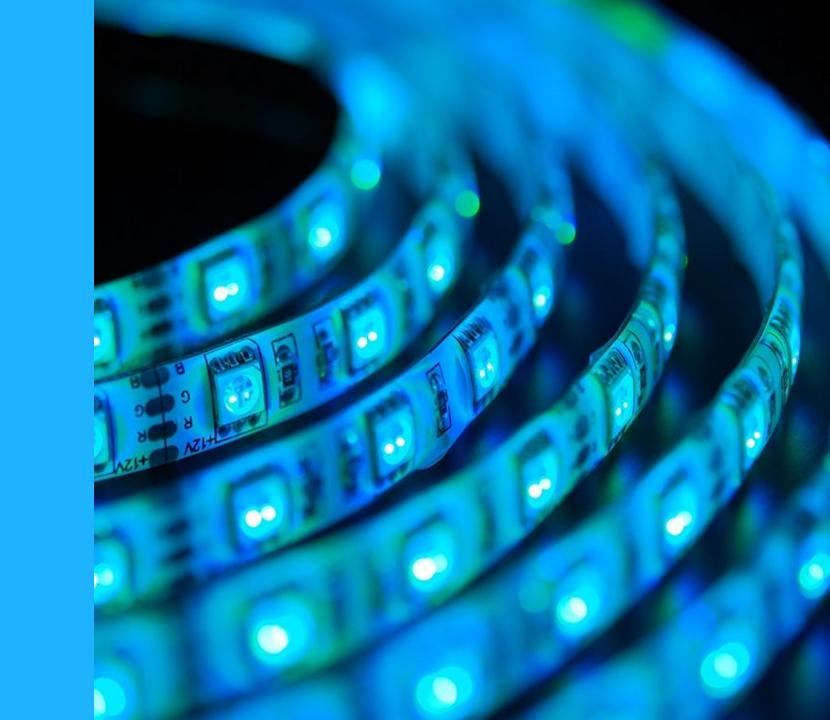
Source: Ghatikar et. al (2010)


- Real-time processing requirements drive shape
- Asynchronous processing potential represents flexibility
- IT must forecast load much like electricity to avoid service outage

Estimated AI Data Centre Average Daily Load



Data Centre Flexibility – Illustrative


- Data on the actual amount of synchronous vs. asynchronous processing by IT intensive sector not widely available
- Graphic to the left is Al's best estimate at the current time, backed by well reasoned explanations (but no real-world data)
- Future research plans are to review the IT load forecasting literature to see if more insights can be gained
- Meter data could also provide insights here
- Asynchronous processing can be moved around, in space and time, in response to price or emissions signals
- Real-time processing likely to need to be located close to users
- Together, these factors drive the electricity load profile, as well as the likely siting watershed

Source: Perplexity Al

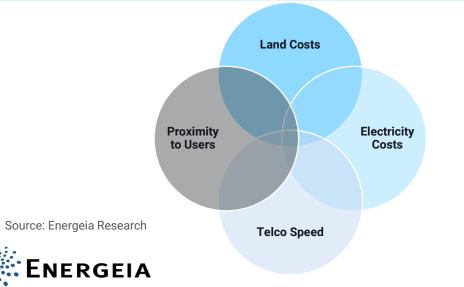
Data Centre Siting and Sizing

- Data Centre Types
- Siting Data Centres

Overview of Data Centre Types and Sizes				
Туре	Definition / Overview	Typical Size Range (MW)	Approximate Count of Data Centres (US)	
Hyperscale Data Centre	Large-scale facilities that offer extensive space, power, cooling, and infrastructure to support massive data and cloud computing operations	100-300	510	
Enterprise Data Centre	A data centre that is owned and operated by a single organization to support their IT needs	1-300	Unknown	
Colocation Data Centre	Space within a building, owned or leased by a company, that is rented out to third parties for their networking equipment or server storage	5-100 1,400		
Edge Data Centre	Smaller facilities located close to the populations they serve that deliver cloud computing resources and cached content to end users	1-5 1,000		

- There are a wide range of types of data centres, but there are four main categories, which are shown at left
- The largest ones have been typically built by the largest companies, e.g., Google and Meta
- While total size is upwards of 300 MW, they are typically developed in blocks of around 25 MW, over time
- This is not dissimilar to any industrial estate

Source: Energeia Research

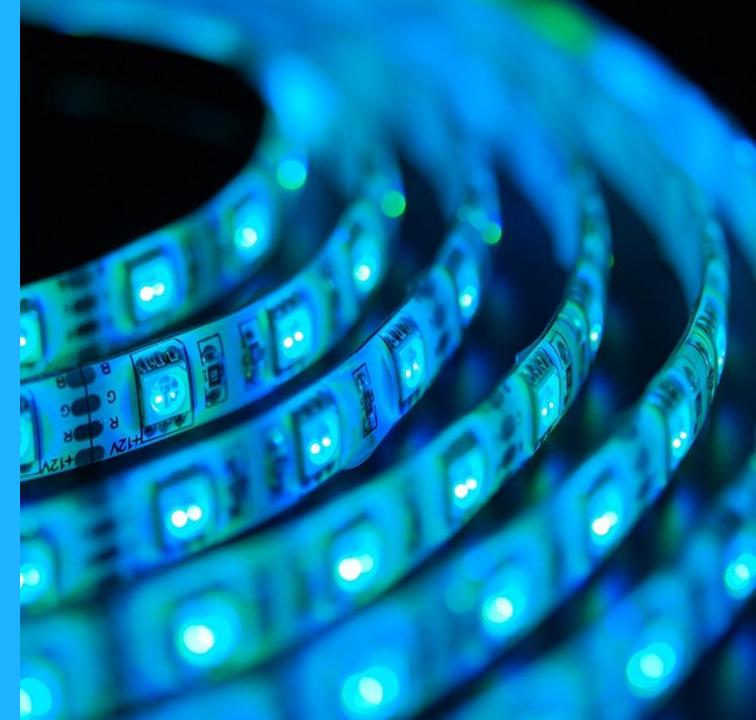


Data Centre Siting and Sizing

Current US Data Centre Hot Spots					
Rank	Location	Data Centres	MW	MW/Data Centre	
1	Northern Virginia	300	3,945	13.2	
2	Phoenix	100	1,380	13.8	
3	Dallas	150	1,125	7.5	
4	Atlanta	80	1,065	13.3	
5	Chicago	110	805	7.3	
6	Northern California (Silicon Valley)	160	790	4.9	
7	Portland (including Hillsboro)	50	540	10.8	
8	New York & New Jersey	145	450	3.1	
9	Seattle (including Quincy)	70	395	5.6	
10	Los Angeles	65	220	3.4	
	Total	1,230	10,715	8.7	

Source: DGTL Infrastructure (2024), Energeia Analysis

Drivers of Data Centre Siting


Current and Forecast Data Centres by ISO/RTO

Source: BCG (2023)

Industry Levels for Least Cost Data Centre Integration

- Customer Classification
- Connection Policy
- Rates
- Energy Efficiency and DR Programs
- BTM / Co-located Resources


Key Industry Levers for Integrated Data Centres at Least Cost

Lever	Issues	Strategies	
Customer Classification	 Are these loads materially different in shape, flexibility, i.e. cost to serve, to justify their own rate class? Significant flexibility potential indicated for some server intensive sectors 	 FERC recently found this not to be the case, at least in the specific case Further evidence will be required before a new class is allowed, e.g., agriculture, etc. 	
Connection Policy	 First come basis leads to strategic queuing, eating up spare capacity that may not be realized Potential for some sectors, e.g., crypto, to close down if forecast prices decline 	 A strategic approach, e.g., Renewable Energy Zones, may make sense for similar reasons Important that cost recovery policies carefully balance future revenues against this risk is offset considerations 	
Rates	 Some sectors may have significant flexibility May be possible to arbitrage franchise areas, if lower cost area close enough to avoid latency threshold 	 Demand response programs probably of interest Drying up of spare capacity may push to higher cost grids 	
Energy Efficiency and DR Programs	 AC is the second largest source of demand; other energy efficiency opportunities very technical Significant demand flexibility seems possible 	 Programs to help optimize AC loads could be valuable Programs to monetize load flexibility could be valuable 	
Renewable Energy / BTM Resources	 Tier-1 IT companies all have strong sustainability targets Potential for load to follow zero carbon generation periods 	 Renewable energy solutions that align to load profile Consider in load forecasting models 	

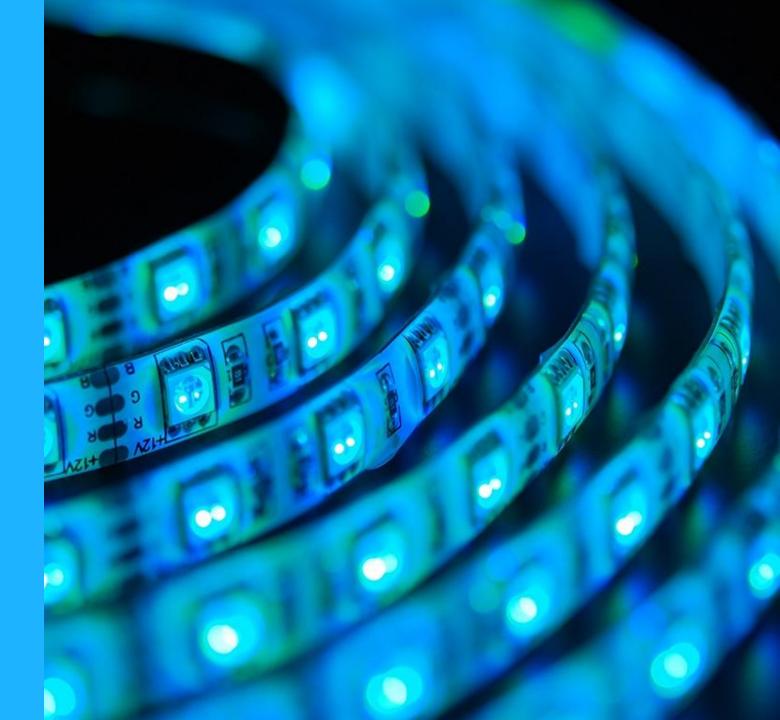
Source: Energeia

Takeaways and Recommendations

Key Takeaways and Recommendations

• Key Takeaways

- Growth in server intensive industries is uncertain, but the fundamentals suggest it has legs for next 10 years at least
- o Growth will be uneven, focused on areas near to major populations, fibre links, low real estate and electricity costs
- New connections will vary in size, with the largest connections likely near to population centres (synchronous) or major fibre links with low-cost land and electricity (asynchronous) – the latter is for overflow only after load sharing
- A significant portion of the load seems likely to reflect underlying economic and demographic patterns
- There is still significant potential for energy efficiency to reduce consumption per compute/storage activity, with AC and standby power opportunities well understood


Key Recommendations

- Determine the nature of your utility's likely share of IT intensive industry load, to allocate appropriate levels of effort:
 - How close are you to population or business centres?
 - How good is your fibre connectivity?
 - How low are your land and electricity prices?
- How much spare capacity do you have the in MV and sub-transmission networks in areas of low land prices, connected to the fibre optic backbone?
- o Consider opportunities for strategic planning and connection policies, e.g. like for renewable energy
- Be proactive with cost reflective rates and associated demand response programs, best practice here does not yet exist
- o Be proactive with renewable energy solutions, as this customer segment is generally ahead of government mandates

Energeia Power Sessions

Q & A Next Power Session Topic

Energeia's Power Session Webinar Series

- Q&A
 - Add your questions in the chat
 - o Unanswered questions will be answered via email
- Vote for your favourite Power Session webinar topic
 - Industrial Decarbonization: Hard-to-Abate Sectors
 - Heavy/Medium Transportation Electrification
 - o Best Practice Approaches to Climate and Weather Impacts
 - Electrification Workforce Analysis and Planning
 - Virtual Power Plants: Best Practices

Reserve your place at the next Power Session discussion

Industrial Decarbonisation: Hard-to-Abate Sectors

24 April 2025 9:30 AM - 10:15 AM (AEST)

Where to find Energeia and Ezra Beeman

Website

- Energeia.au
- Energeia-USA.com

LinkedIn

- Energeia
- Energeia USA

o Email

- insights@energeia.com.au
- <u>ebeeman@energeia.com.au</u>

Watch for a follow-up email with recording and presentation links to share

Thank You!

Energeia Pty Ltd L1, 1 Sussex Street Barangaroo NSW 2000

P +61 (0)2 8097 0070 <u>energeia@energeia.com.au</u>

energeia.au

